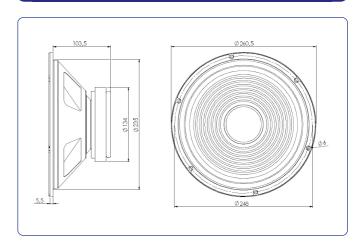


CM-10 LOW & MID FREQUENCY TRANSDUCER

KEY FEATURES

- 250W program power.
- Sensitivity 95 dB, 1W @ 1m.
- Extended controlled displacement: X_{max} ± 6,5 mm.
- Treated cloth surround.
- Smooth and flat response and low distortion.
- Suited for bass and midbass applications in small vented cabinets.
- Steel basket.
- Ferrite magnet.


TECHNICAL SPECIFICATIONS

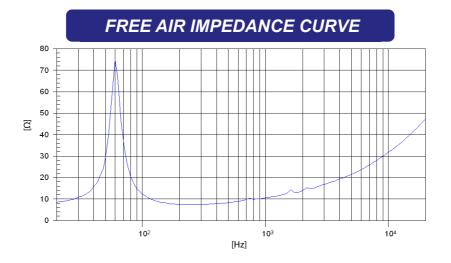
Nominal diameter	250 mm	10 in
Rated impedance		8 Ω
Minimum impedance		7,4 Ω
Power capacity*	12	5 W _{RMS}
Program power		250 W
Sensitivity	95 dB 1W @ 1	m @ 2π
Frequency range	50 - 5	.000 Hz
Recom. enclosure vol.	40 / 100 I 1,41 /	3,53 ft ³
Voice coil diameter	38,5 mm	1,5 in
Magnetic assembly weight	2,75 kg	6,06 lb
BL factor	1	2,2 N/A
Moving mass	(),035 kg
Voice coil length		16 mm
Air gap height		7 mm
X _{damage} (peak to peak)	2	24,5 mm

THIELE-SMALL PARAMETERS**

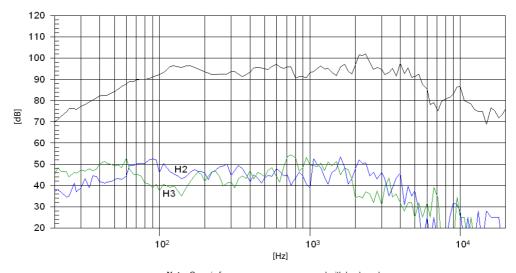
Resonant frequency, f _s	61 Hz
D.C. Voice coil resistance, R _e	6,15 Ω
Mechanical Quality Factor, Q _{ms}	6,38
Electrical Quality Factor, Q _{es}	0,55
Total Quality Factor, Q _{ts}	0,51
Equivalent Air Volume to C _{ms} , V _{as}	40,7 I
Mechanical Compliance, C _{ms}	192 μm / N
Mechanical Resistance, R _{ms}	2,13 kg / s
Efficiency, η ₀	1,60 %
Effective Surface Area, S _d	0,039 m ²
Maximum Displacement, X _{max} ***	6,5 mm
Displacement Volume, V _d	195 cm ³
Voice Coil Inductance, L _e @ 1 kHz	1,2 mH

DIMENSION DRAWINGS

MOUNTING INFORMATION


Overall diameter Bolt circle diameter	260,5 mm 248 mm	10,26 in 9,76 in
Baffle cutout diameter: - Front mount	235 mm	9,25 in
- Rear mount	240 mm	9,45 in
Depth	103,5 mm	4,07 in
Volume displaced by driver	2,5 I	0,09 ft ³
Net weight	2,93 kg	6,46 lb
Shipping weight	3,30 kg	7,28 lb

Notes


- * The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.
- ** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
- *** The X_{max} is calculated as $(L_{vc} H_{ag})/2 + (H_{ag}/3,5)$, where L_{vc} is the voice coil length and H_{ag} is the air gap height.

CM-10

LOW & MID FREQUENCY TRANSDUCER

FREQUENCY RESPONSE AND DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

beyma //