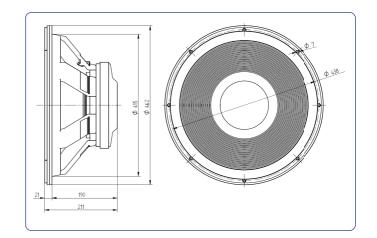


18PW1400/Fe

LOW FREQUENCY TRANSDUCER
PW Series


KEY FEATURES

- High power handling: 1400 W_{AES}
- Malt Cross[®] Cooling System
- Low power compression looses
- High sensitivity: 98 dB
- · FEA optimized ferrite magnetic circuit
- Designed with MMSS technology for high control, linearity and low harmonic distortion
- Optimized nonlinear parameters
- Waterproof cone with treatment for both sides of the cone
- 4" DUO double layer inner/outer voice coil
- Aluminium demodulating ring
- Extended controlled displacement: X_{max} ± 10 mm
- Massive mechanical displacement capability: X_{damage} ± 55 mm

DIMENSION DRAWINGS

TECHNICAL SPECIFICATIONS

Nominal diameter	460 mm	18 in
Rated impedance		8 Ω
Minimum impedance		5,3 Ω
Power capacity*	1.4	00 W _{AES}
Program power		2.800 W
Sensitivity	98 dB @ 1	1W @ Z _N
Frequency range	25 -	1.800 Hz
Recom. enclosure vol.	80 / 200 I	2,8 / 7 ft ³
Voice coil diameter	100 mm	4 in
Magnetic assembly weight	14,4 kg	31,8 lb
BI factor		29,0 N/A
Moving mass		0,230 kg
Voice coil length		25 mm
Air gap height		12 mm
X _{damage} (peak to peak)		55 mm

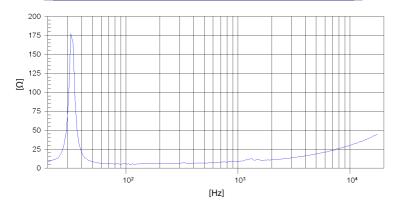
THIELE-SMALL PARAMETERS**

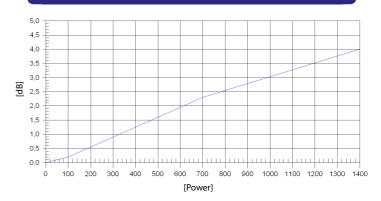
Resonant frequency, f _s	32 Hz
D.C. Voice coil resistance, R _e	5,05 Ω
Mechanical Quality Factor, Q _{ms}	10,23
Electrical Quality Factor, Q _{es}	0,28
Total Quality Factor, Q _{ts}	0,27
Equivalent Air Volume to C _{ms} , V _{as}	228,9 I
Mechanical Compliance, C _{ms}	103 μm / N
Mechanical Resistance, R _{ms}	4,62 kg / s
Efficiency, η ₀	2,71 %
Effective Surface Area, S _d	0,1255 m ²
Maximum Displacement, X _{max} ***	10 mm
Displacement Volume, V _d	1.251 cm ³
Voice Coil Inductance, L _e	1,2 mH

MOUNTING INFORMATION

Overall diameter	462 mm	18,2 in
Bolt circle diameter	438 mm	17,2 in
Baffle cutout diameter:		
- Front mount	415 mm	16,3 in
Depth	211 mm	8,3 in
Net weight	16,9 kg	37,3 lb
Shipping weight	18,1 kg	40 lb

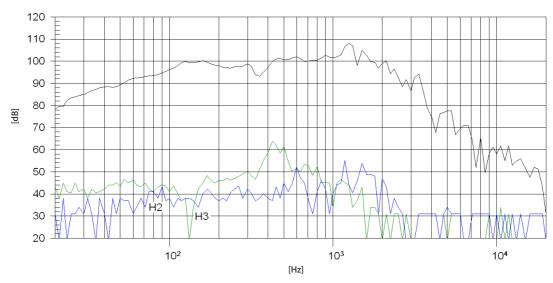
Notes


- * The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.
- ** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
- *** The X_{max} is calculated as $(L_{VC}$ $H_{ag})/2$ + $(H_{ag}/3,5)$, where L_{VC} is the voice coil length and H_{ag} is the air gap height.


18PW1400/Fe

LOW FREQUENCY TRANSDUCER
PW Series

FREE AIR IMPEDANCE CURVE



POWER COMPRESSION LOSSES

Note: Power compression losses were calculated after 5 minutes period applying a pink noise signal filtered between 25 and 200 Hz.

FREQUENCY RESPONSE AND DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

beyma //

Polígono Industrial Moncada II • C/. Pont Sec, 1c • 46113 MONCADA - Valencia (Spain)
• Tel.: (34) 96 130 13 75 • Fax: (34) 96 130 15 07 • http://www.beyma.com • E-mail: beyma@beyma.com •