

15MCS500

LOW FREQUENCY TRANSDUCER
Preliminary Data Sheet

KEY FEATURES

- High power handling: 1000 W program power
- 2,5" copper wire voice coil
- Beyma's Malt Cross® ultimate Cooling System
- Low power compression losses
- High sensitivity: 98 dB
- Optimized pressed steel frame
- FEA optimized magnetic circuit
- Designed with MMSS technology for high control, linearity and low harmonic distortion. LSI optimized parameters
- Waterproof cone with treatment for both sides of the cone
- Optimized for 2 or 3 way PA systems and line arrays for ultimate professional applications

Nominal diameter	380 mm 1	5 in
Rated impedance		8 Ω
Minimum impedance	7,	,1 Ω
Power capacity*	500 W	'AES
Program power	1.00	0 W
Sensitivity	97 dB 1W / 1m @	Z _N
Frequency range	50 - 4.000) Hz
Voice coil diameter	63,5 mm 2,	,5 in
BI factor	16,8	N/A
Moving mass	0,09	5 kg
Voice coil length	19,5	mm
Air gap height	10	mm
X _{damage} (peak to peak)	40	mm

THIELE-SMALL PARAMETERS**

Resonant frequency, f _s	49 Hz
D.C. Voice coil resistance, R _e	5,8 Ω
Mechanical Quality Factor, Q _{ms}	5,7
Electrical Quality Factor, Q _{es}	0,62
Total Quality Factor, Qts	0,56
Equivalent Air Volume to C _{ms} , V _{as}	118,2 I
Mechanical Compliance, C _{ms}	108 μm / N
Mechanical Resistance, R _{ms}	5,1 kg / s
Efficiency, η ₀	2,25 %
Effective Surface Area, S _d	0,088 m ²
Maximum Displacement, X _{max} ***	8 mm
Displacement Volume, V _d	704 cm ³
Voice Coil Inductance, Le @ 1 kHz	1 mH

Notes:

MOUNTING INFORMATION

Overall diameter	381 mm	15 in
Bolt circle diameter	367 mm	14,49 in
Baffle cutout diameter:		
- Front mount	353 mm	13,90 in
Depth	170 mm	6,69 in
Net weight	6,4 kg	14,11 lb
Shipping weight	7,4 kg	16,12 lb

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE & DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

^{*} The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.

^{**} T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

^{***} The X_{max} is calculated as $(L_{vc} - H_{ag})/2 + (H_{ag}/3,5)$, where L_{vc} is the voice coil length and H_{ag} is the air gap height.